"Il est impossible de discuter sur un objet, de reconstituer l’histoire qui lui a donné naissance sans d’abord savoir ce qu’il est"

C Levi-Strauss.

 

 

Participez au Forum
"Brainstorming en ligne"

Exprimez vous sur "Novum corpus"
Weblog

 

Présentation

Processus

 

Questionnements

Téléchargements

Glossaire

Citations

(Sur CDS/ISIS/UNESCO)

 

Liens

Environnement

Une époque scrute l'axe syntagmatique

retour

Depuis la parution de " La structure des révolutions scientifiques" de Thomas Kuhn, on admet que les innovations s'accompagnent d'un changement de paradigme. Le " Zeitgeist " d'une époque exige ce changement. Une anomalie gênante apparait dans une théorie après une période de latence plus ou moins longue. Ces nouvelles théories induisent des innovations techniques qui, à leur tour, favorisent l'éclosion de nouvelles formes de représentation de la réalité. Le progrès est alors un mouvement brownien d'innovations dans les trois domaines de la science, des arts et des techniques.

 

L'axe syntagmatique.

Les mots, véhicules du sens, défilent les uns après les autres sur l'axe syntagmatique. Leurs formes obéïssent aux règles grammaticales de la langue à laquelle ils appartiennent. Le sens du discours dépend de la place des mots sur l'axe syntagmatique.

Soit l'énoncé :

Le soleil tournait autour de la terre

Sur l'axe syntagmatique, on peut effectuer les transformations suivantes:

Le
soleil tournait autour de la terre
La
terre tourne autour du soleil
La
lune tourne autour de la terre

Ces transformations traduisent le passage du géocentrisme à l'héliocentrisme au XVIème siècle. L'environnement de ce passage est fortement marqué par les onze jours de décalage constaté entre le calendrier julien et l'observation des révolutions lunaires. De ce fait, fixer la date de célébration de Pâques par rapport aux lunaisons était tâche ardue. Pour s'en acquitter, l'Eglise adjoignait au calendrier julien l'ancien calendrier hébreu. Cet aménagement conservait la représentation antique de l'Univers héritée d'Aristote améliorée par les épicycles de Ptolémée. Les observations, cependant, obligeaient l'Eglise, attachée à une interprétation biblique du monde, à une réforme. En 1514, le pape fit appel à un mathématicien, chanoine au chapitre de Frauenburg, Nicolas Copernic.

L'axe paradigmatique.

Ses travaux aboutirent à l'hypothèse d'une inversion des places respectives de la lune et du soleil. Il créait ainsi une nouvelle relation paradigmatique. Avant de devenir une rité admise de tous, cette relation paradigmatique devait devenir syntagmatique par simple vérification des énoncés coperniciens.

Relation paradigmatique et syntagmatique

Un autre exemple est fourni par Villemin qui soupçonna dès 1865 qu'un bacille était la cause de la tuberculose. Le bacille et la tuberculose sont alors en relation paradigmatique. Lorsque Robert Koch colore le bacille en 1882, Mycobacterium tuberculosis puis le cultive sur sérum coagulé, il établit formellement le lien de cause à effet entre maladie et le bacille. Depuis ce temps, les signifiants Koch et le bacille Mycobacterium tuberculosis sont en relation syntagmatique. Le bacille de Koch fait partie du langage courant.

D'une façon générale, on peut considèrer tout progrès des connaissances ( ou par extension des représentations de la réalité ) comme le passage de signifiants d'une relation paradigmatique à une liaison syntagmatique. Ce passage n'intervient d'ailleurs généralement qu'après une période de latence. De la naissance d'une innovation , d'une trouvaille de la vie quotidienne, en effet, au point où elle est portée à la connaissance du public, puis reconnue, le chemin est long.

Représentation fractale de l'imaginaire

Quoi qu'il en soit, le caractère innovant, au contraire des reformulations dans la continuïté des représentations anciennes est dû au passage de l'imaginaire au symbolique. Ce passage est repérable par la discontinuïté, par une "coupure épistémologique " ou un "saut technologique". Les fractales, par leurs propriétés, offrent un moyen commode de représentation de l'imaginaire dans le plan défini par les axes syntagmatiques et paradigmatiques.

Soit une des fractales la plus connue, celle de Mandelbrot.

Fractale de Mandelbrot

.

Fractale de Mandelbrot

Chacune des parties de la fractale (dans l'encadré blanc de la figure ci-dessus) est reproductible à l'infini. Pourtant l' aire définie par le pourtour de la factale est fini. Des exemples de structures fractales sont nombreux. B. Mandelbrot, lui-même, a donné comme exemple la côte bretonne dont les déchiquettements peuvent se mesurer à grande échelle sur une carte ou bien à l'échelle microscopique le long des plages. Les choux-fleurs, les arbres, les nuages, les éclairs électriques, les montagnes, les poumons et les vaisseaux sanguins sont des fractales naturelles ( auto-similarité approximative).

Coquillage (Cymbolia innexa REEVE) sur lequel on peut observer un enchevêtrement de triangles de Sierpenski.

 

Autrement dit, une fractale est une image de l'infini, caractérisée par :

son auto-similarité

Elle convient parfaitement pour l' imaginaire également sans limite. Les contours de la fractale sont dessinés par ordinateur selon une équation comme les mots définissant une création générée selon les lois et règles de la créativité. La fractale figure alors assez bien l'expression des représentations imaginaires aux organisations de signifiants en nombre théoriquement infini mais tout de même limité pour une époque et à un endroit donné. La fractale figure alors par son auto-similarité, la génération continue à l'aide du langage d'objets similaires (voisins et comparables) à partir de simples objets.

son invariance d'échelle

La répétition régulière des itérations figure également la permanence du sens ( la surface de la fractale est finie) malgré les variations infinies des organisations de signifiants donnant un sens à un objet donné. ( Le langage n'est qu' une carte - contour de la fractale - sur la réalité jamais exactement atteinte ).

suite

Liens

En savoir plus sur les fractales

 

 

Exemple de la Penicilline

Figuration fractale du progrès des connaissances